FUNGSIONAL METAGENOMIK: STRATEGI EFEKTIF DALAM EKSPLORASI GEN TARGET GLIKOSIDA HIDROLASE

Maris Kurniawati, Amak Yunus

Abstract


 Strategi metagenomik memberikan keuntungan dapat mengekplorasi langsung genom-genom yang belum terjelajahi, terutama dari mikroorganisme yang tidak dapat dibudidayakan atau dikultur dalam kondisi tertentu. Penemuan gen-gen yang berisi klon-klon glikosida hidrolase yang sama sekali tidak identik dengan yang ditemukan pada database publik, telah berhasil dilakukan melalui pendekatan metagenomik. Analisis data terhadap hasil temuan-temuan klon-klon pada pustaka metagenomik yang dihasilkan menunjukkan klon yang diperoleh sebagai rangkaian asam nukleat fungsional baru yang berbeda dari database yang sudah ada.

Kata Kunci: Fungsional metagenomik, eksplorasi gen target, glikosida hidrolase


Full Text:

PDF

References


Abot, A., Arnal, G., Auer, L., Lazuka, A., Labourdette, D., Lamrre, S., Trouilh, L., Laville, E., Lombard, V., Potocki-Veronese, G., Henrissat, B., O’Donohue, M., Hernandez-Raquet, G., Dumon, C., & Leberre, V.A. 2016. CAZyChip: Dynamic Assessment of Exploration of Glycoside Hydrolases in Mycrobial Ecosystems. BMC Genomics. 17: 1-12.

Allgaier, M., Reddy, A., Park, J.I., Ivanova, N., D’haeseleer, P., Lowry, S., Sapra, R., Hazen, T.C., Sommons, B.A., VanderGheynst, J.S., & Hugenholtz, P. 2010. Targeted Discovery of Gliciside Hydrolases from a Switchgrass-Adapted Compost Community. PloS ONE. 5 (1):

e8812.

Chu, C.Y., Tseng, C.W., Yueh, P.Y., Duan, C.H., & Liu, J.R.. 2011. Molecular Cloning and Characterization of a β-Glucanase from Piromyces rhizinflatus. Journal of Bioscience & Bioengineering. 111(5): 541-546.

Escuder-Rodríguez, J.J., Decastro, M.E., Becerra, M., Rodríguez Belmonte, E., & Gonzalez-Siso, M.I. 2018. Advances of Functional Metagenomics in Harnessing Thermozymes. Metagenomics. Chapter 15. Handelsman, J. 2007. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiology Molecular Biology. 68(4): 669-685.

Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., & Davies, G. 1995. Conserved Catalytic Machinery and The Prediction of a Common Fold for Several Families of Glycosyl Hydrolases. Proceedings of the National Academy of Sciences. 92: 7090-7094.

Indah, M. 2004. Enzim. Digitized by USU digital library. Fakultas Kedokteran Universitas Sumatra Utara.

Kurniawati M, Purkan, Sumarsih S, Baktir A. Metagenomic DNA Library: Exploration of Novel Genes Encoding Glycoside Hydrolases. Int J Eng Technol. 2018;7(4.7):472.

Kurniawati M, Halimah N, Hudha M N, Sudiyono S, Purkan P, Sumarsih S and Baktir A 2019 Construction and Screening Beta-Glucanase Activity of Metagenomic cDNA Expression Library of Digestive Gland of Achatina fulica International Journal of Pharmaceutical

Research 11(1) 67-73

Kang, Y.M., Kim, M.K., An, J.M., Haque, M.A., & Cho, K.M. 2015. Metagenomics of Un-Culturable Bacteria in Cow Rumen: Construction of cel9E-xyn10A Fusion Gene by Site-Directed Mutagenesis. Journal of Molecular Catalysis B: Enzymatic. 113: 29-38.

Kanokratana, P., Eurwilaichitr, L., Pootanakit, K., & Champreda, V., 2015. Identification of Glycosyl Hydrolases from a Metagenomic Library of Microflora in Sugarcane Bagasse Collection Site and Their Cooperative Action on Cellulose Degradation. Journal of Bioscience and Bioengineering, 119 (4): 384-391.

Ko, K.C., Han, Y., Cheong, D.E., Choi, J.H, & Song, J.J. 2013. Strategy for Screening Metagenomic Resources for Exocellulase Activity Using A Robotic, High-Throughput Screening System. Journal of Microbiological Methods. 94: 311-316.

Li, Y., Liu, N., Yang, H., Zhao, F., Yu, Y., Tian, Y., & Lu, X. 2014. Cloning and characterization of a new β-Glucosidase from a metagenomic library of Rumen of cattle feeding with Miscanthus

sinensis. BMC Biotechnology. 14(85): 1-9.

Li, B.F., Zhu, Y.X., Gu, Z.B., Chen, Y, Leng, J., Guo, X., Feng, L., Li, Q., Xi, D.M., Mao, H.M., & Yang, S.L. 2016. Screening and Characterization of a Novel Ruminal Cellulase Gene (Umcel1) from a Metagenomic Library of Gayal (Bos frontalis). Journal of Integrative Agriculture. 15(4): 855-861.

Linton, S.M., Cameron, M.S., Gray, M.C., Donald, J.A., Saborowski, R., Bergen, M.V, Tomm, J.M., & Allardyce. 2015. A Glycosyl Hydrolase Family 16 Gene is Responsible for the Endogenous Production of β-1,3-Glucanases within Decapod Crustaceans. Gene. 569: 203-217.

Martin, K., McDougall, B.M., Mcllroy, S., Jayus, Chen, J. & Seviour, R.J. 2007. Biochemistry and Molecular Biology of exocellular Fungal β-(1,3)- and β-(1,6)-Glucanases. FEMS Microbiological Reviews. 31: 168-192.

Mirete, S., Morgante, V., & Pastor, J.E.G. 2016. Functional metagenomics of extreme environments. Current Opinion Biotechnology. 38: 143-149.

Naumoff, D.G. 2011. Hierarchical Classification of Glycoside Hydrolases. Biochemistry (Moscow). 76: 764-780.

Pandey, S., Gulati, S., Goyal, E., Singh, S., Kumar, K., & Nain, L. 2016. Construction and Screening of Metagenomic Library Derived from Soil for β-1,4-Endoglucanase Gene. Biocatalysis and Agricultural Biotechnology. 5: 186-192.

Peng, Y., Liu, G.L., Yu, X.J., Wang, X.H, Jing, L., & Chi, Z.M. 2011. Cloning of Exo-β-1,3-glucanase Gene from a Marine Yeast Williopsis saturnus and Its Overexpression in Yarrowia lipolytica.

Biotechnology. 13: 193-204.

Sakamoto, K., & Toyohara, H. 2009. Molecular Cloning of Glycoside Hydrolase Family 45 Cellulase Genes from Brackish Water Clam Corbicula japonica. Comparative Biochemistry & Physiology. Part B. 152: 390-396.

Schmeisser, C., Steele, H., & Streit, W.R. 2007. Metagenomics with non-culturable microbes. Application Microbiology & Biotecnology. 75: 955-962.

Ueda, M.,A., Ito, A., Nakazawa, M., Miyatake, K., Sakaguchi, M., & Inouye, K. 2014. Cloning and Expression of The Cold-Adapted endo-1,4-β-Glucanase gene from Eisenia fetida. Carbohydrate Polymers. 101: 511-516.

Uria, A.R., Fawzya, Y.N., & Chasanah, E. 2005. Eksplorasi Enzim Mikroba dari Lingkungang Laut Melalui Pendekatan Metagenomika. WPPI. 11(7): 17-24.

Voget, S., Steele, H.L., & Streit, W.R. 2006. Characterization of a Metagenome-Derived Halotolerant Cellulase. Journal of Biotechnology, 126: 26-36.

Vuong, T.V. & Wilson, D.B. 2010. Glycoside Hydrolases: Catalytic Base/Nucleophile Diversity. Biotechnology and Bioengineering. 107: 195-205.

Wang, F., Li., F., Chen, G., & Liu, W. 2009. Isolation and Characterization of Novel Cellulase genes from Uncultured Microorganisms in Different Environmental Niches. Microbiological

Research. 164: 650-657.

Wang, Q., Qian, C., Zhang, X.Z., Liu, N., Yan, X, & Zhou, Z. 2012. Characterization of a Novel Thermostable β-Glucosidase from a Metagenomic Library of Termite Gut. Enzyme and

Microbial Technology. 51: 319-324.

Wyk, N.V., Drancourt, M., Henrissat, B. & Kremer L. 2017. Current Perspectives on The Families of Glycoside Hydrolases of Mycobacterium tuberculosis: Their Importance and Prospects for Assigning Function to Unknowns. Glycobiology. 27: 112-122.

Xiang. L., Li. A., Tian. C., Zhou, Y., Zhang. G., and Ma. Y., Identification and characterization of a new acid-stable endoglucanase

rom a metagenomic library. Protein Expr. Purif., vol. 102,

pp. 20–26, 2014.

Yoon, M.Y., Lee, K.M., Yoon, Y., & Go, J. 2013. Functional Screening of a Metagenomic Library Reveals Operons Responsible for Enhanced Intestinal Colonization by Gut Commensal Microbes. Applied & Environmental Microbiology. 79(12): 3829-3838.

Yun, J. & Ryu, S. 2005. Screening for novel enzymes from metagenome & SIGEX. as a way to improve it. Microbial Cell Factories. 4(8): 1-5.


Refbacks

  • There are currently no refbacks.